مقایسه روش‌های شبکه عصبی مصنوعی و رگرسیون چند متغیره در پهنه‌بندی خطر زمین‌لغزش، مطالعه موردی: حوضه ونک، استان اصفهان

Authors

  • فرزاد حیدری مربی، بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران
  • کورش شیرانی استادیار، بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران
Abstract:

زمین‌­لغزش­‌ها از مهمترین خطرات طبیعی هستند که نه تنها زندگی انسان را به خطر می­‌اندازند، بلکه باعث ایجاد بار اقتصادی برای جامعه می­‌شوند. با توجه به اهمیت تشخیص مناسب­‌ترین روش برآورد صحیح خطر زمین‌­لغزش، در این پژوهش میزان کارایی دو روش شبکه عصبی مصنوعی و رگرسیون چندمتغیره مقایسه شد. بدین منظور ابتدا با استفاده از عکس­‌های هوایی، تصاویر ماهواره­‌ای، نقشه­‌های زمین‌شناسی و بررسی‌های میدانی نقشه پراکنش زمین‌­لغزش­‌ها تهیه شد. همچنین، با استفاده از بررسی­‌های میدانی و مرور مطالعات انجام شده اقدام به بررسی و تعیین نه پارامتر موثر در رخداد زمین­‌لغزش شامل لیتولوژی، کاربری اراضی، شیب، جهت شیب، ارتفاع، بارش، فاصله از گسل، فاصله از جاده و تراکم شبکه زه­کشی شد. پس از تهیه لایه­‌های اطلاعاتی با استفاده از GIS و وزن­‌دهی به عوامل موثر، با استفاده از نقشه پراکنش زمین‌­لغزش، اقدام به تهیه نقشه‌­های پهنه­‌بندی خطر زمین‌­لغزش با استفاده از روش­‌های شبکه عصبی مصنوعی  و رگرسیون چند متغیره شده و نتایج مورد ارزیابی قرار گرفت. با توجه به اینکه برای ارزیابی مدل نمی­‌توان از همان لغزش­‌هایی استفاده نمود که در پهنه­‌بندی استفاده شده­‌اند، لذا، از بین نقاط لغزشی، 70 درصد (140 عدد) برای اجرای مدل و 30 درصد (60 عدد) برای ارزیابی مدل­‌ها مورد استفاده قرار گرفت. مقادیر شاخص‌­های مجموع کیفیت (QS) و دقت (P) به­‌ترتیب برای روش شبکه عصبی (0.15 و 0.08) و برای روش رگرسیون چند متغیره (0.14 و 0.05) بوده که  این نتایج  بیانگر تناسب بیشتر نتایج مدل شبکه عصبی در پهنه­‌بندی منطقه مورد مطالعه می­‌باشد. بدین ترتیب با انتخاب بهترین روش پهنه‌­بندی، می‌توان به نقشه پهنه­‌بندی خطر قابل اعتماد و نتایج مطلوب­‌تری دست یافت.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه عملکرد شبکه عصبی و رگرسیون چند متغیره در تخمین قیمت مسکن (مطالعه موردی: شهر اهواز)

مسکن همواره نیازی اساسی در جامعه تلقی می‌گردد. بازار مسکن طی سال‌های گذشته یکی از پرنوسان-ترین بخش‌های اقتصاد کشور ایران بوده است. از آنجایی که نغییرات بخش مسکن تاثیر فراوانی بر سایر بخش‌های اقتصاد دارد بنابراین یکی از نیازهای قابل توجه در امر مسکن، پیش‌بینی دقیق قیمت این کالا می-باشد. در این راستا در پژوهش حاضر با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه، مدلی برای پیش‌بینی قیمت مسکن در ش...

full text

مقایسه عملکرد شبکه عصبی و رگرسیون چند متغیره در تخمین قیمت مسکن (مطالعه موردی: شهر اهواز)

مسکن همواره نیازی اساسی در جامعه تلقی می‌گردد. بازار مسکن طی سال‌های گذشته یکی از پرنوسان-ترین بخش‌های اقتصاد کشور ایران بوده است. از آنجایی که نغییرات بخش مسکن تاثیر فراوانی بر سایر بخش‌های اقتصاد دارد بنابراین یکی از نیازهای قابل توجه در امر مسکن، پیش‌بینی دقیق قیمت این کالا می-باشد. در این راستا در پژوهش حاضر با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه، مدلی برای پیش‌بینی قیمت مسکن در ش...

full text

مقایسه روش‌های نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیش‌بینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)

با توجه به مشکلات اندازه‌گیری مستقیم برخی از ویژگی‌های خاک، در سال‌های اخیر از روش‌های غیر مستقیم برای برآورد این خصوصیات استفاده می‌شود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگی‌های زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگی‌های دیریافت...

full text

مقایسه مدل های شبکه عصبی مصنوعی و رگرسیون چند متغیره در تخمین تغییرات کیفی آب زیرزمینی (مطالعه موردی: آبخوان کاشان)

مجاورت آبخوان کاشان با جبهه­ آب شور دریاچه­ نمک، باعث ایجاد شیب هیدرولیکی و درنتیجه پیشروی آب شور به داخل آبخوان شده است. در این پژوهش با توجه به وضعیت موجود، شبیه­سازی کیفی آب زیرزمینی دشت کاشان با استفاده از مدل­های شبکه عصبی مصنوعی (شامل پرسپترون چندلایه و تابع شعاعی) و رگرسیون چند متغیره انجام شد. برای این منظور ابتدا اقدام به تعیین تیپ غالب آب منطقه شد و سپس اقدام به مدل­سازی شد. نتایج حاص...

full text

مقایسه روش های نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیش بینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)

با توجه به مشکلات اندازه گیری مستقیم برخی از ویژگی های خاک، در سال های اخیر از روش های غیر مستقیم برای برآورد این خصوصیات استفاده می شود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگی های زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگی های دیریافت...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 4

pages  451- 464

publication date 2017-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023